A Model for Prediction of Kidney Cancer Using Data Analytic Technique

نویسندگان

  • Felix Aranuwa
  • Olanike Ogundare
  • Sellappan Palaniappan
چکیده

Our focus in this research work is to present an efficient algorithm for apt prediction of cancer of the kidney in which medical practitioners and patients could gain valuable knowledge for early and proactive intervention strategies to save lives from this harmful disease. To achieve these objectives, dataset pertaining to patients of cancer of the kidney were acquired from selected private and public hospitals in south west Nigeria. A two-layered classifier system consisting of Rule Induction (RI) and Decision Tree (DT) classifiers was designed to build the model based on data analytic approach. The classifier system designed was tested successfully using case study data from fifty-two (52) selected Local Governments in South West Nigeria using purposive and selective sampling technique. Ten classification algorithms were used in the modeling. Waikato Environment for Knowledge Analysis was used for the experiment and each model was built in two different ways (10-fold cross validation and percentage split mode). Performance comparison of the various algorithms considered was carried out using standard metrics of accuracy for classification and speed of model building benchmarks. The experimental results show that the J48 decision tree algorithm outperform all other algorithms in all the layers with correctly classified instances of 74.7%, F-Measure of 0.614, TP rate of 0.747, FP rate of 0.135, precision and recall of 0.687 and 0.714 respectively. It took the best algorithm, 0.03 seconds to build the model. This proves that the algorithm is suitable for the research purpose. The results from the system framework when tested with test data shows that the identified attributes, algorithm and the system model performed well and can serve as valuable tool for early detection of the disease in patients. CCS Concepts • Software and its engineering ➝Software organization and properties ➝Extra-functional properties ➝Software performance

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival

Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...

متن کامل

Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival

Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...

متن کامل

Presenting a Model for Predicting Tax Evasion of Guilds Based on Data Mining Technique

In this research, considering the importance of the topic and the gap in previous researches, a model for predicting tax evasion of guilds based on data mining technique is presented. The analyzed data includes the review of 5600 tax files of all trades with tax codes in Qazvin province during the years 2013-2018. The tax file related to guilds is in five tax groups, including the guild group o...

متن کامل

Prediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)

Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...

متن کامل

مقایسه مدل شبکه عصبی مصنوعی و رگرسیون پارامتری در پیش‌بینی بقای بیماران مبتلا به سرطان معده

Background & Objective: Using parametric models is common approach in survival analysis. In the recent years, artificial neural network (ANN) models have increasingly used in survival prediction. The aim of this study was to predict of survival rate of patients with gastric cancer by using a parametric regression and ANN models and compare these methods. Methods: We used the data of 436 gast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016